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is the correct one, and that structure I can be eliminated. 
Because of the almost complete predominance of the 
scattering of mercury as compared with that  of 
chlorine, it would be of interest to investigate the 
possibility that  HgNH2Br and HgNH2I might have 
closely related structures. 

The comparative structural chemistry of the com- 
pounds Hg~NC1.H~O, HgNH~C1 and Hg(NH3)~Cl~ is 
interesting because of their easy production and inter- 
conversions in the presence of ammonia and ammonium 
chloride of various concentrations. The chloride of 
Millon's base, Hg2NC1. H~O, consists of an infinite three- 
dimensional framework, that  of HgNH2CI (infusible 
precipitate) of infinite one-dimensional chains, and that  
of Hg(NII3)2C1 ~ (fusible precipitate) (MacGillavry & 
Bijvoet, 1936) could well be described in terms of finite 
linear groups +H3N-Hg-NH3 + placed at random along 

the directions of the three crystallogTaphic axes in the 
cubic unit cell with C1- at 0, 0, 0 and NH + at ½, ½, ½. Thus 
in each of these structures mercury forms bonds at 180 ° 
angles, while nitrogen forms tetrahedral bonds, to 4 Hg 
in Hg2NC1. H20, to 2 Hg and 2 H in HgNH2C1, and to 
1 Hg and 3 H in Hg(NH3)2C12 . 
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Forbidden Reflections in the Harker-Kasper Inequalities* 
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Two variations of the standard method of sign determination, using the Harker-Kasper inequalities, 
are discussed with specific illustrations from the structure of p-di-tertiary-butylbenzene. The first 
instance is the use in the left-hand side of the inequality of planes whose intensities are zero, owing 
to space-group extinctions. The second, more interesting, instance involves half odd-integer 
planes in the same position. 

Some of the limitations of the Harker-Kasper:~ in- 
equalities can be circumvented by the use of reflections 
forbidden either by the space group, or even by the 
lattice itself (i.e. non-integral indices may be used). 

In all of the inequalities it is necessary to use the 
largest available U's. (This is the notation for the 
unitary structure factor introduced by Gillis (1948).) 
Indeed, the best results are obtained by using the more 
complicated inequalities with combinations of large 
U's on the right-hand side. Even then the signs of the 
U's often remain indeterminate, especially for crystals 
with large unit cells containing many atoms, such as 
many organic crystals. 

The two applications discussed here are sometimes 
successful when previously described methods fail. 

* From a dissertation submitted to the Faculty of Bryn 
Mawr College in partial fulfilment of the requirements for the 
degree of Doctor of Philosophy. 

Present address: Protein Structure Project, Polytechnic 
Institute of Brooklyn, Brooklyn, N.Y., U.S.A. 

:~ All of the inequalities used here are given in the paper by 
Harker & Kasper (1948). 

1. Space-group extinctions 

The Harker-Kasper 'sum and difference' inequality, 

I U(hO1) +. U(h'Ol')I~<~ 1 +½ V(2h,O,21)+½ V(2h',O,2I') 
+_[U(h-h',O,l-l')+U(h+h',O,l+l')], (1) 

provides relationships between signs of different U's. 
When zeros occur on the left side, the inequality remains 
useful if the following is satisfied" 

I U(h-h ' ,O , l - l ' ) l+  I U(h+h',O,l+l')l> 1 
+ ½ ] U(2h,O,21)]+ ½ [ U(2h',O,21')I. 

Although a zero value on the left may reduce the 
effectiveness of the inequality, greater flexibility is 
gained in the choice of planes on the right. 

I t  is unnecessary to insure observable reflections on 
the left and thus limit the planes used on the right. In 
fact, for the space group Pn, in order to have h - h ' ,  
1-  l' and h + h', l + l' all odd, h must be odd, 1 even and 
h' even, l' odd, or conversely. This condition requires the 
use of planes forbidden by space-group symmetry. 

An example from the structure of p-di-tertiary- 
butylbenzene, with space group P21/n, illustrates this 
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application. With the data from Table 1, the signs of 
U(103) and U(305) can be related by means of 

or  

[ U(201) +_ U(104)19 ~< 1 + ½ U(402) + ½ U(208) 

+ [u(103)+ u(305)] 

I 0 _+ 0 1 ~ ~< 1 +0.3318+0.0988 _+ [0.6958 + 0.8778], 

where S = _+ 1, and is the sign of the structure factor. 
For the most unfavorable case, S(402) = S(208) = + 1, 

0 ~< 1.429 _+ [0.6958+ 0.8778], 

which must be true for both signs in front of the bracket. 
Clearly, if S(103)=S(305) this is not the case. Hence, 
S(103) = - S(305). 

Table 1. Observed U(hkl) value.from 
p-di-tertiary-butylbenzene 

hkl U ( hkl)o 
103 0"695 
20g 0" 195 
303 0"877 
405 0"661 
430 0"717 
440 0"577 
707 0-190 
87O 0 
hO1 0 when  h + 1 is odd 
0k0 0 when/c  is odd 

2. Half odd-indices 
In cases where the use of space-group extinctions does 
not yield signs for a sufficient number of U's, unob- 
servable reflections with haft-integral indices are fre- 
quently helpful on the left side of (1). In fact, if the 
relative signs are to be determined at all for 

U(h-h' ,O,l- l ' )  and U(h+h',O.l+l'), 

when h -  h' and h + h', l -  l' and 1 + l' differ by odd 
numbers, fractional indices must occur on the left of (1). 
Although, under the terms of Bragg's law, reflections 
from such planes are not observable, their use is justi- 
fiable. The applicability of the Schwarz or Cauchy 

inequalities to the structure factors depends only on the 
general algebraic form of U(hkl) and the positivity, 
respectively, of the electron-density function every- 
where, or of the atomic f 's.  The derivation does not in 
any way restrict (hkl) to integers. 

An example of the application of such planes follows. 
Consider, for instance, 

I U(3½,0,3½)+ V(½,0,1½)I~< 1 +½ U(707) + ½ V(103) 

+_ [ U(305) + U(40])]. 

The left-hand side of the inequality is not necessarily 
equal to zero but has a real positive, as yet unknown, 
value R, even though these intensities cannot be 
observed. Then, substituting from Table 1, 

R ~< 1 + 0.0958 + 0.3488 +_ [0.8778 + 0.6618]. 

Thus even if S(707)= S(103)= + 1, it is necessary that  
S(305) = -S(402).  This follows from the fact that  the 

inequalities R 4 1.443 _+ 1.538 

cannot both be satisfied. 
For a set of (h/c0) planes, 

[ U(4,3½,0) +_ U(0,½,0)12 ~< 1 -t- ½ U(870) + 1 U(010) 

_+ [U(430) + U(440)]. 

Equating the left-hand side to a real positive number, 
R, then R~< 1 +0+0_+ [0.7178+0.5778]. 

From this it follows that  S(430)= -S(440).  
Although specific examples of forbidden reflections 

in the inequalities are discussed here, the generality of 
this approach can be extended to all space groups. I f  
unobservable planes are helpful on the right of (1), 
fractional indices other than ½ can also be used on the 
left. 

In conclusion, the author wishes to thank Dr A. L. 
Patterson for his interest and valuable suggestions 
throughout. 
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